Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability.
نویسندگان
چکیده
Changes in epidurally induced (S1) spinal cord reflexes were studied as a function of the level of restoration of stepping ability after spinal cord transection (ST). Three types of responses were observed. The early response (ER) had a latency of 2.5 to 3 ms and resulted from direct stimulation of motor fibers or motoneurons. The middle response (MR) had a latency of 5 to 7 ms and was monosynaptic. The late response (LR) had a latency of 9 to 11 ms and was polysynaptic. After a complete midthoracic ST, the LR was abolished, whereas the MR was facilitated and progressively increased. The LR reappeared about 3 wk after ST and increased during the following weeks. Restoration of stepping induced by epidural stimulation at 40 Hz coincided with changes in the LR. During the first 2 wk post-ST, rats were unable to step and electrophysiological assessment failed to show any LR. Three weeks post-ST, epidural stimulation resulted in a few steps and these coincided with reappearance of the LR. The ability of rats to step progressively improved from wk 3 to wk 6 post-ST. There was a continuously improved modulation of rhythmic EMG bursts that was correlated with restoration of the LR. These results suggest that restoration of polysynaptic spinal cord reflexes after complete ST coincides with restoration of stepping function when facilitated by epidural stimulation. Combined, these findings support the view that restoration of polysynaptic spinal cord reflexes induced epidurally may provide a measure of functional restoration of spinal cord locomotor networks after ST.
منابع مشابه
Ability Transection in Adult Rats: Relationship to Stepping Plasticity of Spinal Cord Reflexes After a Complete
متن کامل
Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection.
Spinal Wistar Hannover rats injected with olfactory ensheathing glia (OEG) have been shown to recover some bipedal stepping and climbing abilities. Given the intrinsic ability of the spinal cord to regain stepping with pharmacological agents or epidural stimulation after a complete mid-thoracic transection, we asked if functional recovery after OEG injections is due to changes in the caudal stu...
متن کاملAdaptations in glutamate and glycine content within the lumbar spinal cord are associated with the generation of novel gait patterns in rats following neonatal spinal cord transection.
After spinal cord transection, the generation of stepping depends on neurotransmitter systems entirely contained within the local lumbar spinal cord. Glutamate and glycine likely play important roles, but surprisingly little is known about how the content of these two key neurotransmitters changes to achieve weight-bearing stepping after spinal cord injury. We studied the levels of glutamate an...
متن کاملVariability in step training enhances locomotor recovery after a spinal cord injury.
Performance of a motor task is improved by practicing a specific task with added 'challenges' to a training regimen. We tested the hypothesis that, in the absence of brain control, the performance of a motor task is enhanced by training using specific variations of that task. We utilized modifications of step performance training to improve the ability of spinal rats to forward step. After a co...
متن کاملAxon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation.
Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 96 4 شماره
صفحات -
تاریخ انتشار 2006